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The subharmonic resonance of simply supported, rectangular laminated plates
is investigated by the method of multiple scales. The governing equations for the
plate, which is based on the first order shear deformation and the von
Kármán-type geometric non-linear theories, are derived by Hamilton’s principle.
The application of Galerkin’s procedure to the governing equations yields the
Duffing-type equation in terms of the transverse displacement. In order to use the
method of multiple scales properly, we introduce new detuning parameter for the
analysis of the subharmonic resonance. The influence of the lamination sequence,
thickness ratio, number of layers and in-plane boundary condition is examined
on the subharmonic resonance. The analytical results are compared with those
obtained by the Runge–Kutta method, and the validity of the present analysis is
clearly shown.
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1. INTRODUCTION

Composite materials such as fiber reinforced plastics (FRP) have been widely used
as structural members due to their excellent mechanical properties (e.g., high
stiffness-to-weight ratio, high strength-to-weight ratio). When composite
laminated plates are subjected to transverse harmonic loads and vibrate with large
amplitudes, non-linear responses (superharmonic, subharmonic and internal
resonances, etc.), which cannot be predicted by the linear theory, frequently occur.
Since the laminated plates are used as one of the main structural members, it has
become important to understand their non-linear dynamic properties as well as
their linear ones. On the other hand, as is well known, the transverse shear
rigidities of laminated plates are weaker than that of metal plates. In analyzing
moderately thick laminated plates, it is necessary to take the effects of the shear
deformation into account.

Non-linear vibrations of laminated plates have been extensively studied by many
researchers. Chia [1, 2] and Sathyamoorthy [3] have conducted a comprehensive
review of the literature dealing with non-linear problems in plates. Sivakumaran
and Chia [4] studied the effects of transverse shear, rotatory inertia and transverse
normal stress on non-linear free vibrations of laminated plates. Singh et al. [5]
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analyzed the non-linear vibrations of moderately thick unsymmetric laminated
composite plates by the finite element method. The effects of geometric
imperfections on non-linear free vibrations of laminated plates and cylindrical
thick panels were examined by Hui [6] and Fu and Chia [7], respectively. Eslami
and Kandil [8, 9] investigated primary, subharmonic and superharmonic
resonances of simply supported orthotropic rectangular plates by the method of
multiple scales (MMS) [10]. Moreover, some researchers have studied the
responses of laminated plates with internal resonances. Hadian et al. [11]
investigated the two-mode response of antisymmetric cross-ply laminated plates
by using the averaged Lagrangian. The present authors [12] studied the two-mode
response of antisymmetric angle-ply laminated plates, and they introduced new
definitions of detuning parameters in order to use the MMS properly. However,
there have been few studies dealing with responses of laminated plates subjected
to non-resonant excitations.

This paper presents a remedy for solving the subharmonic resonance of
moderately thick laminated plates by the MMS. Taking into account the first order
shear deformation theory (FSDT) and the von Kármán-type geometric non-linear
theory, the governing equations for antisymmetric angle-ply laminated plates are
derived by Hamilton’s principle. Then, applying Galerkin’s procedure, the
governing equations are reduced to the Duffing-type equation in terms of the
transverse displacement. Finally, steady-state solutions for the subharmonic
resonance are obtained by using the MMS, where we suggest a new definition of
a detuning parameter to apply it properly. Accuracy of analytical results is
confirmed in comparison with those of numerical integration of the equation of
motion.

2. BASIC EQUATIONS

Figure 1 shows a rectangular laminated plate, which consists of N layers of an
orthotropic sheet, with lengths being a, b and thickness h. The co-ordinate system
(x, y, z) is taken in the midplane of the plate, as shown in the figure. The distance
from the midplane to the upper plane of the kth layer is hk . The principal directions

Figure 1. Geometry of a laminated plate and co-ordinate systems.
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of elasticity are denoted by L and T, and uk is the angle between L and x axes
in the kth layer of the plate.

According to the first order shear deformation theory, it is assumed that the
in-plane displacements of the plate are linear functions of co-ordinate z, and that
the transverse displacement is constant through the thickness of the plate. Thus,
the displacements u, v and w in the x, y and z directions, respectively, can be
expressed as

u= u0 + zcx , v= v0 + zcy , w=w0, (1)

where u0, v0 and w0 are the displacements at the midplane, and cx and cy are the
rotations of midplane about the y and x axes, respectively.

The strain–displacement relations, based on the von Kármán-type geometric
non-linear theory, are written as

ox = o0
x + zkx , oy = o0

y + zky , oz =0,

oxy = o0
xy + zkxy , oxz =cx +

1w0

1x
, oyz =cy +

1w0

1y
,9, (2)

in which

o0
x =

1u0

1x
+

1
2 01w0

1x 1
2

, o0
y =

1v0

1y
+

1
2 01w0

1y 1
2

, o0
xy =

1u0

1y
+

1v0

1x
+

1w0

1x
1w0

1y
, (3)

kx =
1cx

1x
, ky =

1cy

1y
, kxy =

1cx

1y
+

1cy

1x
. (4)

In the following analysis, we consider antisymmetric angle-ply laminated plates.
The constitutive relations can be expressed as follows [7]:

o0
x A*11 A*12 0 0 0 B*16 Nx

o0
y A*12 A*22 0 0 0 B*26 Ny
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xy 0 0 A*66 B*61 B*62 0 Nxyg
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Mx
=

0 0 −B*61 D*11 D*12 0 kx
, (5)

My 0 0 −B*62 D*12 D*22 0 ky

Mxy −B*16 −B*26 0 0 0 D*66 kxy

6Qy

Qx7=$S44

0
0
S55%6oyz

oxz7, (6)
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where N, M and Q are the stress, moment and shear stress resultants respectively.
Constants A*ij , B*ij , D*ij and Sij are derived from

sx
(k) C11 C12 0 0 C16

(k) ox

sy C12 C22 0 0 C26 oy

syz = 0 0 C44 C45 0 oyz , (7)g
G

G

G

G
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f

h
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j
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G
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G

G
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G
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j
sxz 0 0 C45 C55 0 oxz

sxy C16 C26 0 0 C66 oxy

(Aij , Bij , Dij )= s
N

k=1 g
hk

hk−1

C(k)
ij (1, z, z2) dz, i, j=1, 2, 6, (8)

Sij = k2Aij = k2 s
N

k=1 g
hk

hk−1

C(k)
ij dz, i, j=4, 5, (9)

A*=A−1, B*=−A−1B, D*=D−BA−1B, (10)

in which C(k)
ij are the stiffness matrix elements expressing the stress–strain relation

in the kth layer, and k2 is the shear correction factor.
Bert and Chen [13] investigated the effects of rotatory and in-plane inertias on

the vibration of antisymmetric angle-ply laminated plates, and they reported that
both inertias had little effect on the fundamental frequency. Since the present paper
examines the subharmonic resonance of the fundamental mode, the effects of
rotatory and in-plane inertias are neglected. The kinetic energy of the plate can
be written as

T=
r

2 g
b

0 g
a

0

ẇ2
0 dx dy, (11)

where r is mass per unit area of the plate and a dot denotes differentiation in time.
The strain energy of the plate is given by

U=
1
2 g

b

0 g
a

0

(Nxo
0
x +Nyo

0
y +Nxyo

0
xy +Qxoxz +Qyoyz +Mxkx

+Myky +Mxykxy ) dx dy. (12)

The work done by an external pressure q(x, y, t) acting in the z direction is

W=g
b

0 g
a

0

q(x, y, t)w0 dx dy. (13)
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By substituting equations (11)–(13) into Hamilton’s principle

g
t1

t0

d(T−U+W ) dt=0, (14)

and taking the variation in consideration of equations (2)–(4), the governing
equations are derived as follows:

1Nx

1x
+

1Nxy

1y
=0,

1Nxy

1x
+

1Ny

1y
=0, (15)

1Qx

1x
+

1Qy

1y
+

1

1x 0Nx
1w0

1x
+Nxy

1w0

1y 1+
1

1y 0Ny
1w0

1y
+Nxy

1w0

1x 1= rẅ0 − q, (16)

1Mx

1x
+

1Mxy

1y
−Qx =0,

1Mxy

1x
+

1My

1y
−Qy =0. (17)

A force function f satisfying equations (15) automatically is defined as

Nx =
12f

1y2 , Ny =
12f

1x2 , Nxy =−
12f

1x 1y
. (18)

By using relations of equations (5), (6), (15) and (18), equations (16) and (17) can
be rewritten as

rẅ0 − q−
12f

1y2

12w0

1x2 +2
12f

1x 1y
12w0

1x 1y
−

12f

1x2

12w0

1y2

−S44012w0

1y2 +
1cy

1y 1−S55012w0

1x2 +
1cx

1x 1=0, (19)

(B*61 −B*26)
13f

1x2 1y
−B*16

13f

1y3 +D*11
12cx

1x2 +D*66
12cx

1y2

+(D*12 +D*66)
12cy

1x 1y
−S5501w0

1x
+cx1=0, (20)

−B*26
13f

1x3 + (B*62 −B*16)
13f

1x 1y2 + (D*12 +D*66)
12cx

1x 1y

+D*66
12cy

1x2 +D*22
12cy

1y2 −S4401w0

1y
+cy1=0. (21)
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The compatibility equation is obtained by eliminating u0 and v0 in equation (3) and
using equations (4), (5) and (18):

A*22
14f

1x4 + (2A*12 +A*66)
14f

1x2 1y2 +A*11
14f

1y4

=(B*61 −B*26)
13cx

1x2 1y
−B*16

13cx

1y3 −B*26
13cy

1x3

+(B*62 −B*16)
13cx

1x 1y2 +0 12w0

1x 1y1
2

−
12w0

1x2

12w0

1y2 . (22)

Equations (19)–(22) expressed in w0, cx , cy and f are the governing equations for
antisymmetric angle-ply laminated plates based on the first order shear
deformation and the von Kármán-type geometric non-linear theories.

We assume that the plate is simply supported along its four edges, and both
movable and immovable edges are adopted for the in-plane boundary conditions.
Each boundary condition can be given by, respectively,

w0 =Mx =
12f

1x 1y
=g

b

0

12f

1y2 dy=0 at x=0, a

w0 =My =
12f

1x 1y
=g

a

0

12f

1x2 dx=0 at y=0, b

, (23)

w0 =Mx =
12f

1x 1y
=0 at x=0, a, g

b

0 g
a

0

1u0

1x
dx dy=0

w0 =My =
12f

1x 1y
=0 at y=0, b, g

b

0 g
a

0

1v0

1y
dx dy=0

. (24)

Further we assume that the plate is subjected to the following force

q(x, y, t)= q0 sin
px
a

sin
py
b

cos V't, (25)

in which q0 and V' are the amplitude and angular frequency of the force
respectively.

In the following analysis, we study the subharmonic resonance when the
excitation frequency is nearly three times the natural frequency of the fundamental
mode. Therefore displacement functions are expressed using the eigenfunctions of
the linear vibration as

w0 =
h2

a
W sin

px
a

sin
py
b

, cx =
h
a

X cos
px
a

sin
py
b

,

cy =
h
a

Y sin
px
a

cos
py
b

, (26)

h
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G
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where W is a non-dimensional displacement, and X and Y are non-dimensional
rotation angles. The stress function satisfying the boundary conditions (23) and
(24) is assumed to be of the form

f= s
a

p=0

s
a

q=0

Bpq cos
ppx
a

cos
qpy
b

+C1x2 +C2y2, (27)

in which Bpq , C1 and C2 are unknown coefficients. If equations (26) and (27) are
substituted into the compatibility condition (22), then Bpq can be determined by
comparing the coefficients of trigonometric functions in both sides of equation
(22). Using the following relations derived from equations (3) and (5)

h
G

G

G

G

J

j

1u0

1x
=A*11

12f

1y2 +A*12
12f

1x2 +B*1601cx

1y
+

1cy

1x 1−
1
2 01w0

1x 1
2

1v0

1y
=A*12

12f

1y2 +A*22
12f

1x2 +B*2601cx

1y
+

1cy

1x 1−
1
2 01w0

1y 1
2

, (28)

C1 and C2 are solved by performing the integrations in equation (24). In the case
of movable edge condition (23), C1 and C2 are equal to zero. Details of Bpq , C1

and C2 are given in the Appendix.
Substituting equations (25)–(27) into equations (19)–(21) and performing

Galerkin’s procedure [i.e., multiplying equations (19), (20) and (21) by sin (px/a)
sin (py/b), cos (px/a) sin (py/b) and sin (px/a) cos (py/b), respectively, and then
integrating over the area of the plate], three sets of ordinary differential equations
are obtained for the time-dependent variables W, X and Y:

d2W
dt2 +

LWX

H
X+

LWY

H
Y+LWWW+H2GW3 =2F cos Vt,

LXXX+LXYY+HLXWW=0, LYXX+LYYY+HLYWW=0 9. (29)

In the above equations, Lij are the non-dimensional coefficients of the linear terms,
G is the non-dimensional coefficient of the non-linear term, and F and V are the
non-dimensional amplitude and frequency of the load, respectively, and details of
the coefficients are given in the Appendix. Other non-dimensional parameters are
defined as

t=XETh3

ra4 t, H=
h
a

. (30)

Eliminating X and Y from equation (29) and adding on the effect of viscous
damping, the Duffing-type equation in terms of the transverse displacement W is
obtained as

d2W
dt2 +2jv

dW
dt

+v2W+H2GW3 =2F cos Vt, (31)
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where

v2 =LWW +
LXW (LYYLWX −LYXLWY )+LYW (LXXLWY −LXYLWX )

LXYLYX −LXXLYY
, (32)

and j is the damping ratio [8]. The non-dimensional linear natural frequency v

is related to the linear natural frequency v̄ by v= v̄a2(r/ETh3)1/2.

3. METHOD OF MULTIPLE SCALES

In this section, we derive steady-state solutions for the subharmonic resonance
(V1 3v) by using the MMS. In order to apply the MMS to equation (31), we
introduce a non-dimensional small parameter o, which is defined as

o=H2 = (h/a)2. (33)

Using the above parameter, equation (31) is rewritten as

d2W
dt2 +2om

dW
dt

+v2W+ oGW3 =2F cos Vt, (34)

where m= jv/o.
Kondou and Yagasaki [14] pointed out that the way to set small parameters in

the MMS has a great influence on the analytical results in the case of a primary
resonance of the Duffing-type equation. In order to use the MMS properly, they
suggested that a detuning parameter s expressing the relationship between linear
natural frequency v and driving frequency V had better be changed from
V=v+ os to

V2 =v2 + os. (35)

Moreover, the present authors [12] showed that the detuning parameter (35) was
effective for two-mode responses (V1v1 or v2) of laminated plates with an
internal resonance (3v1 1v2). Therefore, a detuning parameter for the
subharmonic resonance (V1 3v) is defined in the quadratic forms of V and v

such as equation (35):

V2 =9v2 + os. (36)

According to the MMS, W(t) is expanded in the form

W(t; o)= x0(T0, T1, . . . )+ ox1(T0, T1, . . . )+ · · · , (37)

in which T0 = t, T1 = ot, . . . are different time scales. Substituting equations (36)
and (37) into equation (34) and equating the coefficients of o0 and o1 on both sides,
we obtain

o0:D2
0x0 +

V2

9
x0 =2F cos VT0, (38)

o1:D2
0x1 +

V2

9
x1 =−2D0D1x0 −2mD0x0 −Gx3

0 +
s

9
x0, (39)
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T 1

Comparison of non-dimensional linear natural frequencies
v of square laminated plates (u=245°) (EL /ET =40,

GLT /ET =GLZ /ET =0·6, GTZ /ET =0·5, nLT =0·5)

N=2 N=8
ZXXXXCXXXXV ZXXXXCXXXXV

a/h Present Reference [15] Present Reference [15]

10 13·162 13·044 19·346 19·289
20 14·223 14·179 23·295 23·259
25 14·368 14·338 23·951 23·924
50 14·569 14·561 24·917 24·909

100 14·620 14·618 25·178 25·176

where Di = 1/1Ti . The first-order approximate solution [i.e., the solution of
equation (38)] is given by

x0 =P(T1) exp(iVT0/3)+L exp(iVT0)+ cc, (40)

in which L=−9F/(8V2), P is an unknown function and cc denotes the complex
conjugate of the preceding terms. Substituting equation (40) into equation (39) and
eliminating the secular terms, the solvability condition is obtained:

2
3
iV(P'+ mP)+3G(P2P�+LP�2 +2L2P)−

s

9
P=0, (41)

where P� is a complex conjugate of P and a prime denotes the derivative with
respect to T1.

To solve equation (41), P and P� are expressed in the polar form

P=
1
2
p exp(ib), P�=

1
2
p exp(−ib), (42)

in which p and b are the amplitude and phase of the subharmonic response
respectively. Substituting equation (42) into equation (41) and separating the real
and imaginary parts, we obtain the following equations:

p'=−mp+
9

4V
GLp2 sin 3b

pb'=
9

8V
Gp( p2 +2Lp cos 3b+8L2)−

s

6V
p

. (43)h
G

G

J

j
The substitution of conditions p'= b'=0 for the steady-state solutions into
equation (43) leads to algebraic equations in terms of unknown variables p and
b. The steady-state solutions are obtained from the algebraic equations by using
the Newton–Raphson method. In order to examine the stability of the steady-state
solutions, we derive characteristic equations in terms of small disturbances on the
steady-state solutions and calculate the eigenvalues of the coefficient matrix of the
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T 2

Material properties

Graphite-epoxy (GR) Glass-epoxy (GL)

EL /ET 40 3
GLT /ET 0·5 0·5
nLT 0·25 0·25
GLZ /ET 0·5 0·5
GTZ /ET 0·33 0·33

equations. If stable steady-state solutions are obtained, the transverse deflection
of the plate is given by

w0

h
=6Ws cos 0V3 t+ b1+Wn cos Vt7 sin

px
a

sin
py
b

, (44)

where Ws =Hp and Wn =HL. In the above equation, Ws is the amplitude due
to the subharmonic resonance (i.e., subharmonic response) and Wn is the
amplitude with the same frequency as the driving frequency (i.e., nonresonant
response).

4. NUMERICAL RESULTS AND DISCUSSION

The non-dimensional linear natural frequencies of antisymmetric angle-ply
laminated plates (u=245°, N=2 and 8) obtained by the present analysis are
compared with those of reference [15] for various thickness ratios in Table 1. The
shear correction factor k2 equals 5/6 in the present analysis. Though the present
theory neglects the effect of in-plane and rotatory inertias, reference [15] took the

T 3

Non-dimensional linear natural frequencies v of plates
used in figures

u N a/h Material v Figure

245° 4 10 GR 17·484 4
245° 4 20 GR 21·454 4, 5, 6, 7
245° 4 30 GR 22·535 4
245° 4 50 GR 23·155 2, 3, 4
245° 4 CPT GR 23·528 4

0° 1 20 GR 17·216 5
0° 1 20 GL 7·246 5

230° 4 20 GR 20·370 5
230° 4 20 GL 7·702 5
245° 2 20 GR 14·095 6
245° 8 20 GR 22·747 6
245° a 20 GR 23·148 6
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Figure 2. Comparison of two detuning parameters on frequency–response curves for the
laminated plate (u=245°, N=4, a/h=50, GR, F=6000); (a) subharmonic response and (b)
non-resonant response. W, Numerical integration; ——, stable; - - - - , unstable.

effect of both inertias into account. Therefore, the values of the present analysis
are slightly larger than those of reference [15]. However, the maximum error is less
than 1%, and the present analysis has sufficient accuracy to examine the
subharmonic resonance.

Square composite plates (antisymmetric angle-ply laminated plates and
orthotropic plates) are treated in the following numerical examples. Each layer is
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assumed to be made of graphite-epoxy or glass-epoxy, whose material properties
[7] are shown in Table 2. The shear correction factor k2 and the damping ratio
j are taken as k2 =5/6 and j=0·005, respectively. The non-dimensional linear
natural frequencies v of the plates used in each figure are listed in Table 3. The
amplitude F of the excitation is shown in each figure.

Figure 3. Comparison of two detuning parameters on force–response curves for the laminated
plate (u=245°, N=4, a/h=50, GR, V=80); (a) subharmonic response and (b) non-resonant
response. Key as in Figure 2.
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Figure 4. Effect of thickness ratio on frequency–response curves for the laminated plate
(u=245°, N=4, GR, F=6000). w, R, r, W, Numerical integration; ——, FSDT; - - - - , CPT.

Figure 2 presents the comparison of the frequency–response curves obtained by
the present method and a conventional detuning parameter (i.e., V=3v+ es)
[10]. An antisymmetric angle-ply laminated plate (u=245°, N=4, a/h=50,
GR) with in-plane immovable boundary along all edges is treated here. Figure 2(a)
and (b) depict subharmonic and non-resonant responses respectively. In Figure
2(a), solid and broken lines indicate stable and unstable responses respectively. It
can be seen in Figure 2 that the amplitudes of the non-resonant response are much
smaller than those of the subharmonic response. The non-resonant responses
obtained by two different detuning parameters almost agree with each other.
However, with an increase in V, the amplitude of the subharmonic response
obtained by the present method deviates from that by the conventional MMS.
There is a difference between them in the high frequency region. In order to check
the validity of the analytical results, the equation of motion (34) is integrated
numerically using the fourth-order Runge–Kutta method. The numerical results
are denoted in Figure 2(a) by W. As seen in Figure 2(a), they are in good
agreement with the results obtained using the present method. Therefore, it can
be said that the present method is more suitable for the analysis of the
subharmonic resonance than the conventional MMS.

Similarly, the comparison of the force–response curves obtained in each method
is presented in Figure 3. The excitation frequency is fixed at V=80. It can be seen
in Figure 3(a) that subharmonic resonances obtained by each method occur at
almost the same force, but the amplitudes of responses obtained by the
conventional MMS are smaller than those by the present method. As the results
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by the present method show good agreement with those by the Runge–Kutta
method, the validity of the present analysis is also confirmed on the force–response
curves.

Figure 4 shows the effect of the thickness ratio on frequency–response curves
for antisymmetric angle-ply laminated plates (u=245°, N=4, GR) with in-plane
immovable boundary along all edges. Only the stable subharmonic responses are
plotted in the figure. Solid and broken lines indicate the results obtained from
FSDT and CPT respectively. The symbols w, R, r and W denote the results for
a/h=10, 20, 30 and 50 respectively, obtained by the numerical integration of the
equation of motion. With a decrease in a/h, the non-dimensional linear natural
frequency decreases as shown in Table 3, and the results of the first order shear
deformation theory deviate from that of the classical plate theory in Figure 4. It
is found that the effect of the shear deformation is significant for the subharmonic
response as well as the linear natural frequency.

Stable subharmonic responses of plates with different fiber angles and material
properties are presented in Figure 5, where the thickness ratio of all plates is
a/h=20 and the boundary is in-plane immovable. Solid and broken lines indicate
plates made of graphite-epoxy and glass-epoxy, respectively. The results obtained
by the Runge–Kutta method for the 0°, 230° and 245° plates are denoted by
the symbols r, W and w respectively. As seen in Figure 5, the amplitude for 0°
is lower than those for 230° and 245°. The occurring frequencies of the
subharmonic resonance for glass-epoxy are higher than those for graphite-epoxy.

Figure 5. Effects of fiber angle and material property on frequency–response curves for the plate
(a/h=20, F=2500). r, W, w, Numerical integration; ——, graphite-epoxy; - - - - , glass-epoxy.
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Figure 6. Effect of number of layers on frequency–response curves for the laminated plate
(u=245°, a/h=20, GR, F=3500). W, w, R, r, Numerical integration; ——, N=a; ——,
N=8; ····· , N=4; - - - - , N=2.

There is a tendency that the increase in V/3v of the amplitudes is more rapid for
glass-epoxy than for graphite-epoxy.

Figure 6 shows stable subharmonic responses of laminated plates (u=245°)
having different number of layers for the same thickness ratio (a/h=20). The
symbols R, r, w and W denote the results for N=2, 4, 8 and a respectively.
In the case of N=a, the bending-stretching coupling stiffness B*ij is equal to
zero. The amplitudes of the subharmonic response get bigger as the number of
layers increases. Therefore, it can be said that the increase in B*ij reduces the
amplitude.

Figure 7 presents the effect of in-plane boundary conditions on frequency–re-
sponse and force–response curves for a laminated plate (u=245°, N=4,
a/h=20, GR). Solid and broken lines indicate the stable and unstable responses
respectively. The results obtained by numerical integration for movable and
immovable edges are denoted by the symbols W and w respectively. The
amplitudes for the movable edge are much larger than those for the immovable
edge. It is found that the in-plane boundary condition has a great influence on
the subharmonic response. In Figure 7(b), the subharmonic resonances for the
immovable and movable edges are generated at F1 1200 and 5600 respectively.
It can be said that the immovable edge condition induces the subharmonic
resonance more easily than the movable edge condition.
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Figure 7. Effect of in-plane boundary condition on frequency–response and force–response curves
for the laminated plate (u=245°, N=4, a/h=20, GR); (a) frequency–response curves (F=8000)
and (b) force–response curves (V/3v=1·1). Key as Figure 2.

5. CONCLUSIONS

Governing equations for simply supported, rectangular antisymmetric angle-ply
laminated plates, based on the first order shear deformation and the von
Kármán-type geometric non-linear theories, were derived by Hamilton’s principle.
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Applying Galerkin’s procedure and eliminating the variables except for the
transverse displacement, the governing equations were reduced to the Duffing-type
equation. Subharmonic resonances of the laminated plates were investigated by
the MMS, where we suggested new definition of a detuning parameter to apply
it properly. The analytical results were compared with those obtained by the
Runge–Kutta method, and the validity of the present analysis was clearly shown.
The influence of the lamination sequence, thickness ratio, number of layers and
in-plane boundary condition on the subharmonic resonance was made clear in
some figures.

One subject for future study is to investigate subharmonic responses for
laminated plates with internal resonances by the present method.
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APPENDIX

The coefficients in equation (27) are as follows:

B11 =
bh{(a2B*16 + b2B*26 − b2B*61)aX+(a2B*16 + b2B*26 − a2B*62)bY}

p{a4A*11 + a2b2(2A*12 +A*66)+ b4A*22}
,

B02 =
b2h4W2

32a4A*11
, B02 =

h4W2

32b2A*22
,

C1 =
(b2A*12 − a2A*11)h4p2W2

16a4b2(A*2
12 −A*11A*22)

, C2 =
(a2A*12 − b2A*22)h4p2W2

16a4b2(A*2
12 −A*11A*22)

,

and all other Bpq vanish. The coefficients in equation (29) are as follows:

F=
4a3rq0

ETh5 g
b

0 g
a

0

sin
px
a

sin
py
b

dx dy, V=V'X ra4

ETh3 ,

LXX =
−p2ra11a12a22a66(r2b16 + b26 − b61)2

4{a11a12a66 + r2a11a22(a12 +2a66)+ r4a12a22a66}
−

p2(d11 + r2d66)+ s55

4r
,

LYY =
−p2a11a12a22a66(r2b62 − r2b16 − b26)2

4r{a11a12a66 + r2a11a22(a12 +2a66)+ r4a12a22a66}
−

p2(r2d22 + d66)+ s44

4r
,

LXY =LYX =
p2a11a12a22a66(b61 − r2b16 − b26)(r2b16 + b26 − r2b62)

4{a11a12a66 + r2a11a22(a12 +2a66)+ r4a12a22a66}
−

p2(d12 + d66)
4

,

LXW =−
ps55

4r
, LYW =−

ps44

4
,

LWX = ps55, LWY = prs44, LWW = p2(r2s44 + s55),

G=
p4{a11(a11a22 −3a2

12 +4r2a12a22)+ r4a22(a11a22 −3a2
12)}

16(a11a12 − a2
12)

(for immovable),

G=
p4(a11 + r4a22)

16
(for movable),

where

(A*11, A*12, A*22, A*66)=
1

ETh 0 1
a11

,
1
a12

,
1
a22

,
1
a661,

(B*16, B*26, B*61, B*62)= h(b16, b26, b61, b62),

(D*11, D*12, D*22, D*66)=ETh3(d11, d12, d22, d66),

(S44, S55)=
ETh3

a2 (s44, s55), r=
a
b

.


